
Introduction to
Software System Analysis and Design

Copyright 2003-2015 Steve Wu Page 1

Part 1

About the Course

� Course Materials
� My over 20 years of IT technology strategy and business

application software development experiences
� Business application project management experiences
� Software industry best practices

Copyright 2003-2015 Steve Wu Page 2

Software industry best practices

� Classroom Style
� Lecture
� Discussion
� Practice
� Questions and answers

� Exams
� Test (30% of total grade)
� Design project (70% of total grade)

Topics Covered in This Course

� Software Development Lifecycle
� Development Methodology
� Software Engineering Goals and Roles

� Project Development Planning
� Project scope
� Project management

� System Analysis
� Requirement Gathering

Copyright 2003-2015 Steve Wu Page 3

� Requirement Gathering
� Use Case Modeling
� Structural Analysis
� Behavior Analysis

� System Design Approach
� System Architecture Design
� User Interface Design
� Business Logic Design
� Persistence Data Design

� Implementation
� Programming construction
� Testing

Course Schedule

Time
6/29

(Monday)
6/30

 (Tuesday)
7/1

 (Wednesday)
7/2

 (Thursday)
7/3

(Friday)
7/6

(Monday)

8:00 am –
8:45 am

Self Introduction

Part 1
Introduction
- About the course

Part 5
System Analysis
- Analysis Process
- Business and

technology system

Part 8
Analysis Modeling
- Concepts
- Techniques
- UML

Classroom Test

Part 11
System Design
Approach
- Design and

development strategy

Part 16
Data Persistence Design
- Data Persistence and

Database

Classroom Workshop
- Student Practice

Final Project
Report

Student Project
Presentation
(Student course
grading)

8:55 am –
9:40 am

Part 1
Introduction
- Software system

development
lifecycle

Part 5
System Analysis
- Current System
- Business process

automation
Business Process
reengineering

Part 9
Structural Analysis
- Conceptual

system structures

Part 12
System Architecture
- System architecture

Layers
- Architecture

decisions

Design and Development
Reviews
- Basic system design

review

(Same as above)

Copyright 2003-2015 Steve Wu Page 4

reengineering

9:50 am –
10:35 am

Part 2
Development
methodology
- Information

Engineering
- Object-oriented
- Component-based

Part 6
Requirement
Gathering
- Get requirements
- Joint Application

Design

 Part 10
Behavior Analysis
- System

interactions for
business data and
processing

-

Part 13
Application Design
- Concepts
- Technique
- Applying concepts

Part 17
Implementation and
Testing
- Programming
Testing

(Same as above)

1:00 pm –
1:45 pm

Part 3
Software engineering
Goals and Roles
- Roles in business

system
- Roles in

technology system

Part 7
Use Case Modeling
- Concepts
- Technique

Classroom workshop
- Student Practice

Part 14
User Interface Design
- User interface design

process
- Design Consideration

Part 18
- Final Course Review

(Same as above)

1:55 pm –
2:40 pm

Part 4
Project Development
Planning
- Project Initiation
Project Management

Part 7
Use Case Modeling
- Applying concepts

Classroom Workshop
- Student Practice

Analysis Reviews
- Basic system

analysis review

Part 15
Business Logic Design
- Application logic
- Component

dependency

Student Project
Assignment
- Complete during
6/28-6/29
- Submit Final Report by
Monday Morning 6/30

(Same as above)

Grading

Test 30
Final Project 70
Total 100

Grading

Pass

Copyright 2003-2015 Steve Wu Page 5

Pass
86-100 A
75-85 B
60-74 C

Not Pass
< 60 F

Course Objectives

� What will you learn from this course?
� Concepts about system architecture

� Concepts about project management

� System analysis and design concepts

� System analysis and design techniques

Copyright 2003-2015 Steve Wu Page 6

� What is the value to you?
� Gain general knowledge about software engineering

� Learn about system analysis and design skill

� Improve key design communication skill

� Increase your system thinking skill

� More importantly, prepare yourself with knowledge and ability for the future

Main Learning Objectives

We will take a top-down approach for this course with the
following subjects as the main learning objectives:

� Software system analysis and design

Copyright 2003-2015 Steve Wu Page 7

� Software system analysis and design
� Software analysis and design concepts

� Analysis and design artifacts

� Software system development lifecycle
� Fundamental analysis and design process

� Software system architect basic skills

What is “System Analysis and Design”?

� Technology solutions for business
� Understand the business needs

� Enable business with technology solutions

� Software engineering

Copyright 2003-2015 Steve Wu Page 8

� Software engineering
� Follow a systematic development process

� Communicate artifacts of system transformation

� Technology automation creation
� Define system architecture

� Create design models

Conceptual View of System Development Process

New ideas

Re-engineering

Development
Planning

Define
Business Process

Business Process
Automation

Change
Business Process

Copyright 2003-2015 Steve Wu Page 9

System Analysis

System Design

Production System
Installation

Production System
Support

System
Implementation

Our study focus

System Development Methodologies

Copyright 2003-2015 Steve Wu Page 10

Part 2

What is Software System Development Methodology?

A Software System Development Methodology should:

� describe an approach for software system development.
� guide development teams using common steps.

define consistent artifacts (e.g. design models).

Copyright 2003-2015 Steve Wu Page 11

� define consistent artifacts (e.g. design models).
� support a system development lifecycle.
� support a team development environment.
� be supported by a standardized set of tools.

Different Software Development Methodologies

� Information Engineering Development Methodology
� Water-fall methodology
� Modular structure
� Procedure processing

� Object-oriented Development Methodology
Iterative methodology

Copyright 2003-2015 Steve Wu Page 12

� Iterative methodology
� Class structure
� Event driven and messaging

� Component-based Development Methodology
� Component integration
� Component reuse

Information Engineering Development Methodology

� Pros:
� Simple process

� Fixed requirements

� Clear phase changes

Cons:

Development
Planning

System Analysis

Copyright 2003-2015 Steve Wu Page 13

� Cons:
� Less flexible for changes

� High degree module dependencies

� High degree data dependencies

System Design

System
Implementation

Object-Oriented Development Methodology

� Pros:
� Iterative analysis and design process

� Flexible design changes with incremental requirement changes

� Promote functional and data independence

� High degree of development productivity Development
Planning

Copyright 2003-2015 Steve Wu Page 14

� Object reuse

� Cons:
� Difficulty of managing project increases

� Software complexity increases

System
Implementation

Planning

System Analysis

System Design

Component-based Development Methodology

� Pros:
� Flexible design changes with incremental requirement changes
� Promote functional and data independence
� High degree of development productivity
� Requirements managed independently
� Clear development boundaries

Development
Planning

Copyright 2003-2015 Steve Wu Page 15

� Clear development boundaries
� Parallel development
� Component reuse

� Cons:
� Complex component development

management process

System Analysis

System Design

System
Implementation

System Analysis

System Design

System Development Lifecycle – Planning

Phase Step Technique Artifacts

Planning
(Why build the

system?)

Identifying Business Value System request and dependencies Business request and
requirements

Analyze feasibility Technical feasibility

Economic feasibility

Organizational feasibility

Feasibility study

Copyright 2003-2015 Steve Wu Page 16

Organizational feasibility

Develop work plan Task Identification

Time estimation

Work plan

Staff the project Creating a staffing plan

Creating a project charter

(goals and plan)

Staffing plan

Project plan

Control and direct project

(throughout the project)

Refine estimates

Track tasks

Coordinate project

Manage scope

Mitigate risk

GANTT chart

CASE tool

Standards list

Project binder(s)

Risk assessment

System Development Lifecycle - Analysis

Phase Step Technique Artifacts

Analysis
(Who, what,
when, where

will the system
be?)

System analysis Problem analysis

Benchmarking

Reengineering

Analysis report

Information gathering Interviews Requirement information

Copyright 2003-2015 Steve Wu Page 17

be?) Information gathering Interviews

Questionnaires

Requirement information

Use case modeling Use cases

Use case models

Activity diagram

Functional models

(business automation)

Structural modeling

(static)

Class diagrams System structural models

Behavioral modeling

(dynamic)

Sequence diagram

Collaboration diagram

Statechart diagram

System interaction models

System Development Lifecycle - Design

Phase Step Technique Artifacts

Design
(How will the
system work?)

System design Custom development

Package development

Outsourcing

Design strategy

Network design Hardware design Technical architecture

Copyright 2003-2015 Steve Wu Page 18

Network design Infrastructure design

Interface design Interface structure

Input design

Output design

Interface design

Database design

(including any files)

Data schema

Data storage

Physical data
structure/table

Data storage design

Object design

(refined physical design)

Class diagrams

Sequence diagrams

Program structure chart

Program specifications

System Development Lifecycle - Implementation

Phase Step Technique Artifacts

Implementation
(System delivery)

Construction Programming

Testing

Programs

Test plan

Installation Direct Configured system

Copyright 2003-2015 Steve Wu Page 19

Installation Direct

Online

Creating Training plan

Configured system

Training plan

Support Support strategy

Post-implementation review

Support/service plan

Software Engineering Goals and Roles

Copyright 2003-2015 Steve Wu Page 20

Part 3

Software Engineering Goals

� Productivity
� To easily develop and modify system designs with efficient and effective

development methodology

� Extendibility

Copyright 2003-2015 Steve Wu Page 21

� Extendibility
� To minimize the dependencies between data and functions to increase

flexibility of making modifications
� To design modular functions for easy of adding new business functions

� Reusability
� To reuse data and functions for other business opportunities

Software Engineering Key Design Considerations

� Modularity
� by data encapsulated with processing functions (i.e. methods)

� Extendibility

� by object independence and inheritance

Copyright 2003-2015 Steve Wu Page 22

� Testability
� by high degree of object independence Component integration

� Maintainability
� by high degree of modularity

� Reusability
� by reuse of objects, components, and object-oriented frameworks

Lifecycles and Roles of System Development

Sales Engineer
(Marketing Support)

Project Manager
(Software Development)

Requirement Engineer
(Business Requirement)

Product Manager
(Product Development)

Product/Solution Architect
(Business Solution Architecture)

Product Support Engineer
(Customer Support)

Copyright 2003-2015 Steve Wu Page 23

Software Engineer
(System Development)

Design Engineer
(User Experience,
Data Model, Network)

Test Engineer
(System Testing)

System Engineer
(System Maintenance Support)

(Software Development) (Business Requirement)

Application Architect
(System Architecture)

Team Work with Software Development Process

Planning Project Manager

Design Programming

Copyright 2003-2015 Steve Wu Page 24

Planning
� Project Manager
� Business Analyst / End-

user Liaison
� System / Network /

Database Architect
� Software Engineer /

Developer /
Programmer

� System Engineer /
Integrator / Usability
Tester

Analysis

Delivering

Testing

Project Development Planning

Copyright 2003-2015 Steve Wu Page 25

Part 4

Project Development Planning

� Project Initiation
� Identify business value

� Feasibility analysis

Copyright 2003-2015 Steve Wu Page 26

� Project Management
� Develop project plan
� Staff the project
� Manage the project

Identify Business Value of using Technology

� Project sponsors
� Business owners
� Customers

� Business needs

Copyright 2003-2015 Steve Wu Page 27

� New business capabilities
� Business re-engineering

� Functionality
� Business functions
� Business processes

Identify Business Value of using Technology (continued)

� Expected value
� Financial gains
� Increasing market shares
� Customer satisfactions

Copyright 2003-2015 Steve Wu Page 28

� Special issues/constrains
� Business limitations
� Regulation limitations
� Competitions in the marketplace
� Market supply/demand limitations

Feasibility Analysis

� Technical Feasibility
i.e., can we build the system?

� Familiarity with business application

Copyright 2003-2015 Steve Wu Page 29

� Familiarity with business application

� Familiarity with technology to be used

� Manageable project size

Feasibility Analysis (continued)

� Economical feasibility
i.e., is it worth to build the system?

� Cash flow
� Pay for the development resources (people, hardware, software, etc.)

� Total Cost (TC) of years
� Development costs
� Operating costs

Copyright 2003-2015 Steve Wu Page 30

� Operating costs
� Total Benefits (TB) of years

� Reduced cost of labor reduction and efficiency
� Additional revenues generated

� Total Net Benefit (TNB) = TB – TC
� Return on Investment = TNB/TC, (ROI is % value)
� Net Present Value = TNB / (1+interests)years

� Intangible costs and benefits
� Market presences
� Reputation
� Brand recognition

Example

Year 1 Year 2 Year 3 Total
New
Development
Cost

$2500
(software and labor)

$2500

New System
Support Cost
(new development)

$4000
(people and
system)

$3500
(people and
system)

$7500

New Business $200 $300 $500

Copyright 2003-2015 Steve Wu Page 31

� TNB = TB –TC
= Cost Saving + new business – initial cost of development
= [($10000 - $7500)+ $500] - $2500 = $500

� ROI = 500/2500 = 20%
� Net Present Value = $500 / (1+4%)3 = $444.5 (value of today)

New Business
（benefits)

$200 $300 $500

Current System
Support Cost
(no change)

$5000 $5000 $10000

Feasibility Analysis (continued)

� Organizational Feasibility
i.e., who will support the system?

� Project champion (e.g. key business or technology
management)

Copyright 2003-2015 Steve Wu Page 32

� Senior management (e.g. company’s leadership
management)

� Users (e.g. customers)

� Other stakeholders (e.g. internal and external business
partners)

� Identifying tasks
� Activities
� Deliverables
� Task hours
� Assignments

� Time estimate

Develop Project Plan

Resource

Project
Effort

Under-staffingOver-staffing

Optimal-staffing

Copyright 2003-2015 Steve Wu

� Time estimate
� Project milestones
� Resource planning (i.e., when/how many people on project)

� Create an overall project plan
� Project effort staffed with appropriate resources:

� Resource (number of staffs) matched Time (milestones)
� Overhead increased situations (project costs increased)

� Under staffing (project time will be longer, overhead increased)
� Overstaffing (project productivity reduced, overhead increased)

Page 33

Time

Effort

Iterative and Incremental Process

Plan

Analyze

Design

Build

Copyright 2003-2015 Steve Wu Page 34

Build

Test

Iteration 1 Iteration 2

Project should start with 20% of each use case
out of 20% of all use cases
= 4% total development effort

20% of each use case

20% of all use cases

Staff the Project

� Staffing plan
� Team members (what are the roles and the needs)

� Skill requirements (what expertise the project
team needs)

Copyright 2003-2015 Steve Wu Page 35

team needs)

� Project team structure (who plays what role)

� Number resources according to the project plan
schedule

Project Management Activities

� Manage the scope
� What is (or is not) to be delivered

� Refine the estimates
� When will tasks be done

Track the tasks

Copyright 2003-2015 Steve Wu Page 36

� Track the tasks
� Who is doing what

� Coordinate the project
� Who is responsible for what to happen and when

� Mitigate the risks
� How can contingency plans reduce the failure risk of the project

System Analysis

Copyright 2003-2015 Steve Wu Page 37

Part 5

About System Analysis

� Purpose

� Analysis Process

Business System and Technology System

Copyright 2003-2015 Steve Wu Page 38

� Business System and Technology System

� Business process automation

� Business reengineering

What is the Purpose of Analysis?

� Capture the business requirements with models

� Transform the business needs into technology implications

� Understand what functions to be built for the business

Copyright 2003-2015 Steve Wu Page 39

� Understand what functions to be built for the business

� Model the business information for future design solutions

Analysis Process

� Understand as-is system (current environment)
� Understand the current system
� Capture the current business and technology environment

� Identify improvement opportunities (changes needed)
� What are problems that should be solved

Copyright 2003-2015 Steve Wu Page 40

� What are the priorities

� What are the cost-effective opportunities

� Develop to-be system (future environment)
� Revise the as-is system

� Modify existing and add new processes

� Modify existing and add new data

� Model and recommend the to-be system

Business System and Technology System

� What is a business system?
- A depiction of a real world business including:
Business process, Business data, Business organization,
Business operation rules, Business policies, etc. ……

Copyright 2003-2015 Steve Wu Page 41

� What is a technology system?
- A depiction of a technology system (solution) for a business
system including:
System process, System data, System structure, etc. ……

� Technology systems support the business systems
and automate the business processes.

Business Process Automation

� Automate the business with technology (why to change)
� Change from manual to automation – faster (e.g. on-line banking vs. paper)
� Use technology to improve business tasks – more accurate

� Analysis methods to determine an automation area (where to
change)

Duration analysis DevelopmentBusiness Process

Copyright 2003-2015 Steve Wu Page 42

� Duration analysis
� Activity-based costing
� Informal benchmarking
� Formal benchmarking

� Follow the analysis process (about how)
� Understand as-is system (current environment)
� Identify improvement opportunities (changes needed)
� Develop to-be system (future environment)

Development
Planning

System Analysis

System Design

Business Process
Automation

System
Implementation

Business Reengineering

� Change current business process
� Increasing business value
� Create business opportunities

� Apply the analysis process to

Copyright 2003-2015 Steve Wu Page 43

� Apply the analysis process to
� Outcome analysis – change value produced for customers
� Breaking assumptions – change reasoning/rules
� Technical analysis – leverage technology
� Activity elimination – reduce steps in the process
� Proxy benchmarking – borrow ideas from different industry

Developing an Analysis Report

Analysis
Objective

Business
Process
Automation

Business
Process
Improvement

Business
Process
Reengineering

� Justify the cost for the benefit of business value

Change impact increases

Copyright 2003-2015 Steve Wu Page 44

Automation Improvement Reengineering

Potential
Business Value
of Return

Low-Moderate Moderate High

Project Cost Low Low-Moderate High

Breadth of
Analysis Needed

Narrow
Narrow-

Moderate
Very broad

Risk of Change Low-Moderate Low-Moderate Very high

Requirement Gathering

Copyright 2003-2015 Steve Wu Page 45

Part 6

Business Requirement Gathering

Selecting appropriate techniques to gather business requirements:

� Document Analysis
� Based on the exiting documentations

� Questionnaires
Information in writing from individual(s)

Copyright 2003-2015 Steve Wu Page 46

� Information in writing from individual(s)

� Interviews
� Information from meeting of individual(s)

� Joint Application Design (JAD)
� Information from meeting of group(s)

Document Analysis

� Research existing documentation
� Business process and data

� Business management

� Syntheses the information

Copyright 2003-2015 Steve Wu Page 47

� Syntheses the information
� Findings
� Identify gaps

� Make recommendations as requirement
� Changes needs
� Suggestions

Questionnaires

� Selecting Participants
� Business representatives
� Subject matter experts

� Design the Questionnaires
� Categorize the questionnaires
� List important items

Copyright 2003-2015 Steve Wu Page 48

List important items
� Straight forward and unbiased
� Set them at a right level without ambiguity

� Administrating the Questionnaire
� Get participants to complete questions
� Explain why the questionnaire is conducted
� Clarify any questions

� Follow-up
� Get back to the participants to make sure work completions

Interviews

� Selecting Interviewees
� Name
� Position
� Purpose of interview
� Meeting

Copyright 2003-2015 Steve Wu Page 49

� Designing Questions
� Close-ended questions – Specific needs
� Open-ended questions – Uncover needs
� Probing questions – Confirm the needs’ certainty or clarity
� Level of questions:

� High-level: very general
� Medium-level: moderately specific
� Low-level: very specific

Interviews (continued)

� Preparing for the interview
� Plan - topic
� Questions – purpose

� Open-ended questions are easier to prepare than the close-ended

� Possible answers – confirmation

� Conducting the interview

Copyright 2003-2015 Steve Wu Page 50

� Conducting the interview
� Build trust
� Professional
� Unbiased
� Document accurately

� Follow-up
� Written interview report
� Confirm interview points
� Clarify additional questions

Joint Application Design (JAD)

� Selecting Participants
� Who should join the JAD session

� Designing the Session
� What topics to go over and get results

� Preparing for the Session

Copyright 2003-2015 Steve Wu Page 51

� What materials to prepare before the session

� Conducting the Session
� Facilitate the discussion and engage with the participants

� Follow-Up
� Any additional information to get from the participants identified at

the session to complete the tasks

Selecting Appropriate Techniques

Techniques Document
Analysis

Questionnaires Interviews JAD

Gathered
information

As-is As-is,
Improvement

As-is,
Improvement,

To-be

As-is,
Improvement,

To-be

Depth of
information

Low Medium High High

Copyright 2003-2015 Steve Wu Page 52

Breadth of
information

Medium
(depends on
availability)

High Low Medium

Integration of
information

Low Low Low High

User
involvement

Low Low Medium High

Cost Low Low Medium Medium-High

Use Case Modeling

Copyright 2003-2015 Steve Wu Page 53

Part 7

Modeling

� What does modeling mean?
� General purposes

� What is to model?
� Subject contents

Copyright 2003-2015 Steve Wu Page 54

� Subject contents

� Use case modeling
� Concepts
� Structures
� Development

What does Modeling Mean?

Modeling is to depict the real world information with
artifact (representations) so that …

� We capture meaningful information in the scope of interests
i.e.Useful model with relevant information
e.g. Business processes, technology systems

Copyright 2003-2015 Steve Wu Page 55

� We know how to utilize the information for developing solutions
i.e. Meaningful model with purpose
e.g. Designs for building system

� We can communicate and share it with development team
i.e. Understandable model with communicable notation
e.g. Graphical and textual descriptions for users to understand

What is to Model?

� Model what is in the context

e.g. business rules, technology constrains

� Model information at a right level

e.g. analysis level, design level

Copyright 2003-2015 Steve Wu Page 56

e.g. analysis level, design level

� Model complex information with different level of
abstractions
e.g. subsystems, packages

Use Case Modeling

What is Use Case?

“A use case is a sequence of transactions in a system whose task is to yield a result of
measurable value to an individual actor of the system.”

Ivar Jacobson

In other words
A use casedescribes a sequence of “system” activities from its user’s perspective.

Copyright 2003-2015 Steve Wu Page 57

A use casedescribes a sequence of “system” activities from its user’s perspective.

Therefore

� Use cases describe how a system will be used

� Use cases specify what business requirements are

� Use cases define system’s functionality and scope

� Use cases provide specifications of a system capability

� Use cases create basis for system testing

Use Case Modeling Concepts

� What is use case for?
Define what is to be performed by the “system”.

� Who develops use case?
Jointly developed by the end-users and the “system” development team.

Copyright 2003-2015 Steve Wu Page 58

Update book record

Library Syste m

Borrower Handle Check book

<<include>>Check book (Borrower's ID)

Use Case Model Structure

� Use Case Model Contains:
� Use case diagram (graphical representation)

� A graphical depictions of how a system is used in a particular
context with the involved actors.

� Actor
� Role in the context of use case
� Initiator or receiver of service

Copyright 2003-2015 Steve Wu Page 59

� Initiator or receiver of service
� External Systems

� Use case (textual description)
� Use case event
� Use case relationship

� Communications: between actors and use cases
� Includes: between a use case and a shared use case by another use

case
� Extends:between a core use case and an extended use case

(extension or alternate course of the core use case)

Use Case Model Structure (continued)

� Use Case Modeling Level
� Main use cases

� Detail use cases

Check-out book
<<include>>

Borrow book (Student ID)

Copyright 2003-2015 Steve Wu Page 60

Update book record

Charge late-return fee

Not if y book return

Check-in book
<<extend>>

<<i nclude>>

Borrower

Return book (Borrower's ID)

Recall book (Book ID)

Library System

More about Use Case

� Use case is an analysis technique, which can be used for different
contexts of modeling “system” and at different levels (conceptual or
logical). This system can be application, component, etc.

� Use case gives the abstraction of the system from the perspective of
its “actor” (i.e., business users, applications, or components
interfacing the system).

Copyright 2003-2015 Steve Wu Page 61

interfacing the system).

� Use case describes the process (activities) performed by the system.
It is generally trigged by actor(s) along with some pre-conditions or
post-conditions. Alternate steps maybe described if certain conditions
are met. This may include any exception handlings.

� Use case diagram is a collection of actors, use cases visually
depicting their relationships (e.g., actors trig use cases or use cases
associate with other use cases).

Develop Use Case Model

� Identify the Main Use Case
� Find the system’ boundaries
� List the primary actors
� List the goals of the primary actors
� Identify and write the main use cases
� Review the main use cases

� Expand the Main Use Case to Detail Use Cases

Copyright 2003-2015 Steve Wu Page 62

� Expand the Main Use Case to Detail Use Cases
� Choose main use cases to expand (for further analysis)
� Fill in details of the chosen use cases (becomes detail use cases)
� Write the normal flow of the events of the use case

� Complex or long flow can be sub-flows
� Identify alternate or exceptional flows
� Write the use case in terms of “who does what to whom” to provide clarity
� Write specific condition, rules and any technical requirements as part of the

activities

Develop Use Case Model (continued)

� Confirm the main use case
� Review the main use cases to make any adjustments

� Use packages to manage complex business functional requirements

� Create use case diagram along the way
� Determine the system boundary

Copyright 2003-2015 Steve Wu Page 63

� Determine the system boundary

� Place the use cases on the diagram

� Place the actors on the diagram

� Draw the associations
� Use case events

� Use case relationships

How to write a use case?

� Identify (discover) an appropriate level of use
cases to write
– Main use cases: Abstract or generalized sequence
– Detailed/Expanded use cases: Specific sequence

Copyright 2003-2015 Steve Wu Page 64

� Start with an actor
– A person who initiates the event
– A system which triggers the event

� End with a completion of an activity thread
performed by the system

Manage
Services

<<home>>

Update
PHR

TelemedicineManage

Profile

Manage
Patient
Profile

Manage

Profile

Manage
Physician

Profile

Telemedicine System Use Case Diagram

Use Case Model Example – Use Case Diagram

Copyright 2003-2015 Steve Wu Page 65

Sign on
Service
Session

Patient

Manage
Video

Manage
Audio

Manage
Chat

Physician

Notify
Session
Status

Manage User
Registration /
Identification

Look up

History

Look up
Patient

Treatment
History

Manage

Schedule

Manage
Service

Schedule

Make
Payment

Telemedicine System Use Case Descriptions

Manage Services <<Home>>

This is the home page for users to browse the general information about Telemedicine, which has links to the activities
that patients and physicians can perform after having registered and sign on successfully. The intent is to have as
much flexibility as possible in principle. The activities may be performed by the patients and physicians are independent
until they are in a session. The following links will be shown on the home page to access medical service or medical
data. They are described by each use case respectively:
•Register
•Sign on Service Session

Use Case Model Example – Use Case Description

Copyright 2003-2015 Steve Wu Page 66

•Sign on Service Session
•Manage Patient Profile
•Manage Physician Profile
•Update Patient Treatment History
•Update Patient Health Record

Manage User Registration / Identification

This use case manage users’ registration and sign-on authentication:
•Register user
and/or
•Authenticate users at the beginning of accessing the services and data.

Telemedicine System Use Case Descriptions

Use Case Model Example – Use Case Description

Sign on Service Session

After successful sign-on verification, a patient will start a session for service. There are two types of sessions:
•On-demand: (request on the fly and waiting for a physician online to response)
•Scheduled (pre-schedule time slot with a physician signed up for, see use case Manage Service Schedule)
•Start a session with a service request that will lead to Make Payment before a service can be granted.
•Once a successful payment is made, a session then can be started, including a set of physical conditions will be entered by the patient.
•In a case of On-demand:
Patient will be put on a waiting list until a doctor is sign on/response to the request.
The waiting list may be sorted by time, treatment need or by name. (go to step 3)
In a case of scheduled:

Copyright 2003-2015 Steve Wu Page 67

In a case of scheduled:
See use case Manage Service Schedule
Scheduled time can be modified any time hereafter for change.
•A session gets started when a doctor who has signed in and respond to a service request. When both the patient and the doctor are
ready for the session with options available (they are described in each use cases respectively):

1.Chat
2.Audio
3.Video

•A generic note of SOAP is created for the physician to capture the information pertain this service:
•Subject - the patient name
•Objective – Service request purpose
•Assessment - the record of diagnoses including text, image
•Plan – treatment plan and medication prescribed.
•The note will be saved in the system for future reference. Patient will be notified for information.
<<Option>>
•A physician may schedule a follow up of treatment services by opening the scheduler for future appointments, which put both physician
and patient to a specific date/time through Manage Service Schedule.
•Use case ends with session closed.

System Modeling with UML

Copyright 2003-2015 Steve Wu Page 68

Part 8

How do We Specify Software Systems?

� Need a software development process
� Need design models to describe the systems

DesignPlanning Analysis

Copyright 2003-2015 Steve Wu Page 69

Software
Systems

Design Models

Development Process

What do We Use to Model Software Systems?

Unified Modeling Language (UML)

Requirements
Analysis

Design

Realized

Copyright 2003-2015 Steve Wu Page 70

Design

Implementation

Testing
Test Plan

Implemented

Verified

UML Offers Features for System Modeling

� Model Elements
� Representations for system structures and interactions

� Relationships
� Representations for system static and dynamic relationships

Diagrams

Copyright 2003-2015 Steve Wu Page 71

� Diagrams
� Graphical models of static and dynamic information about the

system

� Common Mechanisms
� Annotations and user defined information

� Architecture Views
� Models for different system perspectives

Model Elements in UML

� Use Case - A way in which an external actor uses a system

� Class - The definition of objects that share a common structure and
common behavior

� State - A stage of lifecycle in which an object instance is in

Copyright 2003-2015 Steve Wu Page 72

� State - A stage of lifecycle in which an object instance is in

� Package - A logical grouping of model elements

� Component - Physical implementation of a software unit

� Node - A hardware processor on which the software units execute

Relationships in UML

Association - A semantic connection between two classes/instances of objects

Generalization - A relationship between an element and the elements that
specialize it

Interface - Mechanism offered by an element for others to access its functions

Copyright 2003-2015 Steve Wu Page 73

Dependency - An element is need by another

Aggregation - An elements is part of another element

Navigability - An unidirectional association

Multiplicity - Specification of an (+) integer range of allowable cardinalities0..*

Diagrams in UML

� Use Case Diagram (UML 1.x and 2.x)
shows the external view of how a system is used

� Composite Diagram (UML 2.x)
shows the system structural parts, ports and interfaces

� Class Diagram (UML 1.x and 2.x)
shows the class hierarchy and static relationships

� Communication Diagram (UML 2.x)
shows interaction among objects organized in spatial network

Sequence Diagram (UML 1.x and 2.x)

Copyright 2003-2015 Steve Wu Page 74

� Sequence Diagram (UML 1.x and 2.x)
shows interaction among objects organized in temporal order

� Statechart Diagram (UML 1.x and 2.x)
shows states and conditions that cause state changes of an object

� Activity Diagram (UML 1.x and 2.x)
shows activity flows or algorithms and controls of use cases or objects

� Component Diagram (UML 1.x and 2.x)
shows the implementation components in a system and their dependencies

� Deployment Diagram (UML 1.x and 2.x)
shows a system placement of nodes, networking and process distribution

Get more information about UML: www.omg.org/uml

Common Mechanisms in UML

� Specifications
A textual description of additional details about an element

� Adornments
Details rendered as graphical attachment to basic symbols

� Notes
Arbitrary text comments attached to elements

Copyright 2003-2015 Steve Wu Page 75

Arbitrary text comments attached to elements

� Constraints
Textual specifications of or conditions imposed on relationships

� Stereotypes
Creation of a new kind of model elements adapted from an existing

model element

� Properties
Tag-value pairs to attach arbitrary information to modelelements

Use UML to Model Applications Analysis and Designs

Use Case ViewConceptual View

UML RepresentationsConceptual Representations

Distinct Applications

Variants of Applications

Copyright 2003-2015 Steve Wu Page 76

System Structure
View

System Structure
View

Implementation
Component View
Implementation
Component View

System Process
View

System Process
View

Component
Deployment

View

Component
Deployment

View

Logical View

Physical View

System Software

Cross Business Domain
Components (enterprise-level)

Specific Business Domain
Components (business portfolio-level)

Distinct Applications

UML Can Model Business and Technology Systems

Business Event

Application Capability
Application Flow

Copyright 2003-2015 Steve Wu Page 77

Business Process

Data Model

Component Structure

System Component

Technology Deployment

Structural Modeling

Copyright 2003-2015 Steve Wu Page 78

Part 9

Create System Components using Objects

� Business Component
� Logically grouped business functions with objects

� For business applications

� Objects (integrated together) interacting to complete a set of
business processing

Copyright 2003-2015 Steve Wu Page 79

business processing

� System Component
� Non-business specific

� Technical utilities to support lower-level system functions

� Built or supplied by technology vendors for supporting business
component developments

Object Oriented View

� View the world by objects
– Analyze information by objects

– Relate objects by associations

– Communicate to objects by messages

Object Oriented
View

An Object

Copyright 2003-2015 Steve Wu Page 80

� Build systems with objects
– User interface

– Business logic

– Information brokers

– Data storage

Data

Behavior

Process

Objects are ……

� Defined by classes with object-oriented approach
� Contains information about itself attributes and/or states.

� Has behaviors internally (private methods) and interface (public
methods) available for other objects.

� Supported by object-oriented programming languages,

Copyright 2003-2015 Steve Wu Page 81

� Supported by object-oriented programming languages,
JAVA, C++, C#, etc.

� Implemented as software program units of component
or applications

Object Oriented Concepts

� Object
– Packaged with data and behavior

� Class
– Object classifications

� Encapsulation
– Information hiding

� Inheritance

Copyright 2003-2015 Steve Wu Page 82

� Inheritance
– Information generalization and specialization

� Polymorphism (multiple forms)
– Objects (and all subclassed objects) can be referenced and methods

can be involved through dynamic bindings.

e.g. in OO Programming: SHAPE has <<subclass>> SQUIRE, TRIANGLE, CIRCLE
for i := 1 to 10
{aShape := SHAPE[i]; // SHAPE[i] can be SQURE or TRIANGLE
shapeArea[i] := aShape.computeArea} // SQURE.computeArea or TRIANGLE. computeArea

Class Diagram for Structure Modeling

� Class
� Attributes -Data
� Operations -Function

� Associations
� Static – Cardinality, Containment, Inheritance

Copyright 2003-2015 Steve Wu Page 83

� Static – Cardinality, Containment, Inheritance
� Dynamic – Messaging (more discussed in Behavior Modeling)

� Class Diagrams (not just for objects)
� System-level
� Component-level
� Object-level

Class Diagram – Library Example

Librarian

Authorization Level

Get Authorization Level()

Borrowe r

Book Borrowed
Borrower Name
Borrower ID

Book

Book Name
Book ID (ISBN)
Book Type
Lending Status

Set Lending Status()
Get Lending Status()

Book Management

Check-in Book()
Check-out Book()
Record New Book()
Check Book Status()

1..*1 1..*

Library Personnel

Library ID
Name

Get Library ID() 11.. *1.. * 1 1

Copyright 2003-2015 Steve Wu Page 84

Teacher

Teaching Class

Get Teaching Class()

Stu de nt

Class Level

Get Class Level()

Text Book

Co urse
No ve l

Categ ory

Re feren ce B oo k

Subject Type

Get Authorization Level() Borrower ID

Get Books Borrowed()
Set Books Borrowed()
Borrow Book()
Return Book()
Recall Book()

Library System Structural Model

Behavioral Modeling

Copyright 2003-2015 Steve Wu Page 85

Part 10

Develop System Analysis Models

Use Case

Package

Use Case

Diagram

Use Case

Use Case

Package
Business

Processes / Activities

Realization

Use Case

Model
(External view)

Business Functions

Copyright 2003-2015 Steve Wu Page 86

Collaboration

Diagram

Sequence

Diagram

Actor

Class

Class Diagram

State Diagram

Business Requirements

(Rules and constraints)

Realization
(Business domain objects)

Analysis

Model
(Internal view)

Model the System Behaviors

� Use Case View (system external view)
� What business needs
� What business conditions
� What business functions

Copyright 2003-2015 Steve Wu Page 87

� Interaction Diagram (system internal view)
� How the need should be satisfied
� How the conditions are applied
� How the functions are carried out

System Interactions

� Collaboration Diagram
(Communication Diagram in UML 2.0)

� For functional analysis
� Complexity
� Distribution

Copyright 2003-2015 Steve Wu Page 88

� Sequence Diagram
� For sequencing analysis

� Operation order
� System availability
� Data availability

Using Collaboration Diagram
(Communication Diagram in UML 2.0)

School : Book Management

2: Check Book Status(ISBN)

4: Check-out Book(ISBN)

Student : Borrower

3: Get Lending Status(ISBN)

1: Check-out Book(ISBN)

6: Borrow Book(ISBN)

7: Set Books Borrowed()

Copyright 2003-2015 Steve Wu Page 89

Software Engineering : Book

Collaboration Diagram - Check-out Book

3: Get Lending Status(ISBN)

5: Set Lending Status(Out)

Using Sequence Diagram

School : Book Management Student : B orrower Drama : Novel

Check Book Status()

Recall Book (IS BN)

Get Books Borrowed(ISBN)

Set Lending Status(Recalled)

Copyright 2003-2015 Steve Wu Page 90

Check-in Book()

Return B ook(ISB N)

Sequence Diagram - Recall Book

Set Lending Status(In)

Set Books Borrowed(ISBN)

Model System, Component, Object States

� What to model?
� Initial state
� Trigger event
� Every new state
� All possible end-states

Copyright 2003-2015 Steve Wu Page 91

� All possible end-states

� When to model?
� States represent different business conditions
� States represent different business processing steps
� States represent different business values

Statechart Diagram

Check-out Book

New Book Registed

Checked-in Checked-out

Record New Book

Check-in Book

Copyright 2003-2015 Steve Wu Page 92

Checked-in

Statechart Diagram - Book Lending Status

Recalled

Recall Book
Check-in Book

Remove Book

Model System, Component, Object Activities

� What to model?
� Trigger event
� All activities
� Conditional/un-conditional steps
� Messaging to other systems, components, objects

Copyright 2003-2015 Steve Wu Page 93

� Messaging to other systems, components, objects

� When to model?
� Clarify business activities
� Clarify business processing steps
� Clarify system, component, object control flow

Activity Diagram

Daily Book Lending
Maturity

Sys tem Trigger

Matured Book?

Reference : BookStudent : BorrowerStudent : Borrower

Copyright 2003-2015 Steve Wu Page 94

Activ ity Diagram - Manage Book Circulation

Recall Book Reference : Book

- Lending Status
Student : Borrower

- Books Borrowed

If Pass Due?

Student : Borrower

- Books Borrowed

Process Late
Fee

End P rocess

System Design Approach

Copyright 2003-2015 Steve Wu Page 95

Part 11

From Analysis to Design

� Development Strategies
� Custom development
� Packaged software
� Outsourcing

� Transform Analysis Models into Design Models
Factoring

Copyright 2003-2015 Steve Wu Page 96

� Factoring
� Partitions and collaborations

� Structure Application Components
� Layers
� Packaging

Application Development Strategy

� Custom Development
� In house software development teams
� Develop software products
� Develop special purpose applications

� Packaged Software
� Off-shelf commercial software products

Copyright 2003-2015 Steve Wu Page 97

� Off-shelf commercial software products
� General purpose software products for customization
� Business components for development
� Non-business components for development
� Application frameworks for development

� Outsourcing
� Software vendors
� In-house consulting and development

Selecting Development Strategy

Determining
Factors

Choose Custom
(in-house)
Development if …

Select Package
Solution if …

Look for Out-sourcing
Development, if …

Business Need unique need Common need Not core technology for
the business

Select a development strategy that meets the business needs and the time table

Copyright 2003-2015 Steve Wu Page 98

In-house
Experience

Existing business
and technical
experience

Existing business
experience

Both business and
technical experience do
not exist

Project Skill
And Management

Ability to build Not strategic skill Strategic outsource
direction

Time Table Flexible solution Quick solution Flexible skill available
for development, but
may not as quick

Transform Analysis Models into Design Models

� Factoring – generalization
� Abstract functional behaviors
� Abstract common data relationships

For custom software development:

Copyright 2003-2015 Steve Wu Page 99

� Abstract common data relationships
� Group coherent functions and data

� Partitions – reduce complexity
� Components
� Subsystems

Create System Design Models

Collaboration
Diagram

Sequence
Diagram

Use Case

Class Diagram

Business Requirements
(Rules and constraints)

Logical

Analysis
Model

Logical
Systems / Components

Copyright 2003-2015 Steve Wu Page 100

Class

Class Diagram

State Diagram

Design
Model

Transformation
(Change/Add to

Implementation Level Classes)

Implementation-level
Collaboration Diagram

Implementation-level
Sequence Diagram

Logical
Package

Implementation-level
Class Diagram

Logical
Package

Implementation-level
Class

Technology
Requirements /Implications

Dynamic

Static

Structure Your Application

� Architecture Layers (top to bottom)
� Business application specific
� Non-business application specific
� Business domain components
� Non-business domain components
� System components

Application Tiers (front to back)

Copyright 2003-2015 Steve Wu Page 101

� Application Tiers (front to back)
� User interface – presentation
� Business functional logic
� Back-end business data management

� Package Application Components
� Cohesive business functions in scope
� Implementation of coherent processes and data
� Runtime component distribution on platforms

Design Applications

� Applications
� Each Line of business
� Business domain

� Components
� High granular units of software

High cost-effective, harder to build Specific Business Domain

Distinct Applications

Variants of Applications

object

Component

Copyright 2003-2015 Steve Wu Page 102

High granular units of software
� High cost-effective, harder to build

� Objects
� Low granular units of software
� Good reusability, easy to build

System Software

Cross Business Domain
Components (enterprise-level)

Specific Business Domain
Components (business portfolio-level)

System Architecture

Copyright 2003-2015 Steve Wu Page 103

Part 12

System Architecture and Infrastructure

� System Architecture Designs

� Making an Architecture Choice

� Design System with Quality and Reusability

Copyright 2003-2015 Steve Wu Page 104

� Design System with Quality and Reusability

� Infrastructure Design

� Application Deployment Model

System Architecture Designs

� Server-based

� Client-based

Copyright 2003-2015 Steve Wu Page 105

� Client-server

� Distributed multi-tiered

Server-based

� Easy to manage

� Less flexible and versatile

Copyright 2003-2015 Steve Wu Page 106

Mainframe

Presentation Logic
Application Logic
Data Access Logic
Data Storage

Client-based

� Versatile user experiences
� Difficult to change and upgrade
� Higher cost

Presentation Logic
Application Logic

Copyright 2003-2015 Steve Wu Page 107

Client

Client

Client

Data Server

Data Storage

Application Logic
Data Access Logic

Client-server

� Versatile user experiences
� Scalable for data accessing
� Harder upgrade
� Higher cost

Presentation Logic
Application Logic

Copyright 2003-2015 Steve Wu Page 108

Client

Client

Client

Data Server
Data Access Logic
Data Storage

Distributed multi-tiered

� Versatile user experiences
� Easy to manage and upgrade
� Scalable for application and data processing
� Low cost

Presentation Logic

Copyright 2003-2015 Steve Wu Page 109

Client

Client

Client

Application Server

Web Server

Application Server

Presentation Logic

Application Logic
Data Access Logic
Data Storage

Making Architecture Choice

Measurement Server-based
(Mainframe)

Client-based
(Desktop)

Client(rich)-
server

(2-tiers)

Thin/Rich-
Client

(N-tiers)

Cost of
Infrastructure

Very High Medium Low Medium/High

Web-enablement are all possible in these architecture configurations

Copyright 2003-2015 Steve Wu Page 110

Cost of
Development

Medium Low High Medium/High

Ease of
Development

Low High Low-Medium Medium

Interface
Capabilities

Low High High High

Control and
Security

High Low Medium Low

Scalability Low Medium Medium High

Design System with Quality and Reusability

� Granularity - Modula and functional decoupling

� Interface - Consistent and interoperable

� Security - Protect the business

� Scalability – able to handle large business data volume and users

Copyright 2003-2015 Steve Wu Page 111

� Performance - Efficient and high throughput

� Extensibility - Easy to modify and add new functionality

� Reliability - High degree of fault-tolerance

� Testability - Less programmable errors

� Portability - Develop once use everywhere

Infrastructure Design

� Technology Deployment Model
� System topology (locations)
� System connectivity (LAN,WAN, Wireless)
� System process distributions (business functions)

� Hardware and Software Specification

Copyright 2003-2015 Steve Wu Page 112

� Hardware and Software Specification
(requirements)
� Choices of hardware
� Platforms/OS (operating system)
� System operational environment
� User/client environment

Application Deployment Model (UML)

Customer
<<Client>>

DB2
<<Local Database>>

Credit Report
System

<<External Business System>>

<<Internet>>

Copyright 2003-2015 Steve Wu Page 113

Customer

Application
Server

Access Customer Record
Credit Evaluation
Serialize Object
Handle Service Request

Business
User

<<Client>>

Web Server

Build Web pages
Handle Client Request

Corp Net

<<Intranet>>

<<Internet>>

Campus

<<Local Network>>

Application Design

Copyright 2003-2015 Steve Wu Page 114

Part 13

Guiding Your Designs

� Architectural Planes

� Purposes of Design Models

� Design Principles

Copyright 2003-2015 Steve Wu Page 115

� Design Principles

� Design Best Practice

� Design Heuristic

� Design Techniques and Considerations

Architectural Planes

� Business Architecture
� Business processes
� Business requirements

� Application Architecture
� Application analyses

Busin
ess

Conce
ptu

al

Data
 M

odel

Log
ic

al

Data
 M

odel

Conceptual Plane

Busin
ess

Use
 C

ase

Busin
ess

 F
unct

io
nal

Com
ponent

App
lic

at
io

n

C
om

pon
ent

App
lic

atio
n

U
se

 C
ase

Copyright 2003-2015 Steve Wu Page 116

� Application analyses
� Application designs

� Data Architecture
� Business data
� Physical designs

� Technology Architecture
� Infrastructure
� System software and hardware

Da

Phys
ic

al

D
ata

 M
odel

Platform Plane

Design Plane

Implementation Plane

Internet

Com
pone

nt/

Sys
te

m
 M

ode
l

U
se

r I
nte

rfa
ce

End-U
se

r

C
lie

nt

M
id

dle
w
are

N
etw

or
k

D
BM

S

System Model Transformation

Copyright 2003-2015 Steve Wu Page 117

Purposes of Design Models

� To show how a system is designed to work
– Transformed the business activities captured from the analysis object model.

� To show what a system needs to have
– Implementation-level classes and relationships

Copyright 2003-2015 Steve Wu Page 118

– Implementation-level classes and relationships

– Decomposed and added transient classes to support the implementation.

� To meet needs of all business use cases
– All the design models satisfies the use case requirements

– Transform all analysis object models into design object models

Design Principles

� A class should have a key abstraction
� Group coherent functions, not just a collections of data and functions

� Hide (encapsulate) all data within its class

� Use object interfaces to get data

Copyright 2003-2015 Steve Wu Page 119

� Keep classes independent as much as possible

� For potential reuse and easier to extend

� Distribute system functions among the component evenly

� Balanced functional distribution among the component structure

Design Best Practice

� Keep related data and behavior in one place

� Factor the commonality of data, behavior, and/or interface as much as possible in an
inheritance hierarchy

� Use public interfaces of a class (or a component) for accessing data

� Implement a minimal public interface that all classes understand.

Copyright 2003-2015 Steve Wu Page 120

� Make roles as attributes of a class instead of each role as different classes, if they have
common responsibilities/behaviors (e.g. father and mother is attribute value of parent)

� An class should minimize the number of class it collaborates with for loose-coupling

� A container class should know what it contains, and the contained classes should not
have to know who contains it (so that the class is reusable elsewhere)

� The derived-class should not know anything about its supper class (so that it is
independent for reuse)

Design Heuristic – Best Practices

� Do not use global (constant/variable) data. Instead, use objects variables
and methods) as bookkeeping information for other objects.

� Do not create global class in your system that the most of classes have
relationships with it, or are depend on it.

� Do not access or change the data of an object without going through its
public interfaces.

Copyright 2003-2015 Steve Wu Page 121

public interfaces.

� A class with many <<accessor>> methods in its public interface that
should not be a class or should be more than one class.

� Application business logic (i.e., functions) should be decoupled with the
user interface.

� Physical design criteria should not corrupt the logical designs.

Design Techniques and Considerations

� Take the analysis models and create a system design models:
� Architecture Layers
� Design Principles
� Design Best Practice

� Consider the following when define the system architecture:
� Current environment

Copyright 2003-2015 Steve Wu Page 122

� Current environment
� System to be interfaced
� Future business needs
� Possibility of system expansion

� Use collaboration/sequence diagrams to model the system behaviors.

� Use class diagrams to model the relationships among the objects discovered.

� Use statechart diagrams to model an object class behavior as needed.

User Interface Design

Copyright 2003-2015 Steve Wu Page 123

Part 14

User Interface Design Process

� User Scenario Development
� Outline steps of user’s workflow

� Interface Structure Design
� Navigation (links) of interface flows

Interface Standards Design

User Scenario
Development

Interface
Structure

Design

Interface
Evaluation

Copyright 2003-2015 Steve Wu Page 124

� Interface Standards Design
� Interface metaphor – real world concept

� Interface objects – views, forms, pages

� Interface actions – navigation commands, operations

� Interface icons – visual placement

� Interface templates – appearance of page and screens or forms

Interface
Standards

Design

Interface
Design

Prototyping

User Interface Design Process (continued)

� Interface Design Prototyping
� Storyboard

� Web-page prototype

� Language prototype

Copyright 2003-2015 Steve Wu Page 125

� Interface Evaluation
� Heuristic – compare basic design principles and best practice

� Walk-through – present to users for feedback

� Interactive – experimental evaluation

� Formal usability testing – real environment of user’s evaluation

User Interface Design Considerations

� Layout
� Areas for commands, navigation, inputs, outputs, status

� Content Awareness
� Informative for users to know where they are in the system

� Appealing
Functional and inviting with good use of color space and fonts

Copyright 2003-2015 Steve Wu Page 126

� Functional and inviting with good use of color space and fonts

� User Experience
� Easy to learn and easy to use for users

� Consistency
� Consistent design for clarity and predictable functional settings

� Minimize Effort
� Simple to use the system with simple user interface

User Interface Navigation Design

� Basic Principles
� Prevent user mistakes
� Simplify recover from mistakes
� Use consistent grammar order

� Types of Navigation Controls
Languages (commands)

Copyright 2003-2015 Steve Wu Page 127

� Languages (commands)
� Menus (lists)
� Direct Manipulations (control widgets)

� Messages
� Responses feedback
� Guidance instructions (lists)

� Navigation Design Documentation

Input Design

� Basic Principles
� On-line processing vs. batch processing
� Capture data at the source
� Minimize the keystrokes

� Types of Inputs
� Text

Numbers

Copyright 2003-2015 Steve Wu Page 128

� Numbers
� Selection - check box, radio button, list box, drop-down, combo box, slider
� Graphs

� Input Validation
� Completion
� Format
� Range
� Digit
� Consistency

Output Design

� Basic Principles
� Understand report usage
� Manage information load
� Minimize bias

� Types of Outputs
Detail reports

Copyright 2003-2015 Steve Wu Page 129

� Detail reports
� Summary report
� Document
� Graphs

� Media
� Online (voice, video)
� Paper (image, text)
� Electronic (control/message notification)

Best Practice for User Interface Design

� Separate the user interface objects from domain business objects so
they can change independently.

� Avoid sequence of modal dialog windows at anytime if possible as
they tent to “lock-up” the windows while users may need to access
other information.

� Design user interfaces with users in mind - how it is used and how

Copyright 2003-2015 Steve Wu Page 130

� Design user interfaces with users in mind - how it is used and how
convenient it is, etc. Minimize user learning curve.

� Considering business rules and work flows to make design trade-off
between “flat” vs. “deep” windows, web pages, or menus.

� Prototype user interface and validate the usability with the business
users as earlier as possible.

� Balance of interactivity and frequent updates cost

Business Logic Design

Copyright 2003-2015 Steve Wu Page 131

Part 15

Business Application Logic

� Design Criteria
� Object coupling
� Class cohesion
� Method coherence
� Design goals

� Design Activities

Copyright 2003-2015 Steve Wu Page 132

� Design Activities
� Design specifications
� Identifying opportunities for reuse
� Restructuring the design
� Optimizing the design

� Design Application Components with Objects
� Design models for business logic

Object Coupling (between objects)

Level of
Coupling

Type of Object Relationship

loose No direct coupling between objects

Passing reference to another object

Copyright 2003-2015 Steve Wu Page 133

Passing value to another object

Passing control data to another object

Common or global referenced by both objects

Tight Content being referenced directly by another object

Class Cohesion

Cohesion If a class has …

Good
cohesion

Single business concept (attributes related to the business)

A class should has consistent information

Copyright 2003-2015 Steve Wu Page 134

cohesion

Mixed business concepts (different business attributes)

Mixed business domain (different business areas)

Not good
cohesion

Unrelated types of business (different concepts)

Method Coherence

Coherence If methods of a class have …

Good
Coherence

only a single function

connected/related functions

Methods of a class should be related

Copyright 2003-2015 Steve Wu Page 135

connected/related functions

functions using same attributes

directly related functions

support indirectly related functions

supports other related functions of different objects

Not Good
Coherence

has unrelated functions

Design Goals

� Maximize the functional coherence within an
encapsulation boundary (e.g. within a component
or an object)

Minimize the functional coupling between the

Copyright 2003-2015 Steve Wu Page 136

� Minimize the functional coupling between the
encapsulation boundaries (e.g. between two
components or objects)

Design Application Components with Objects

� Understand Business Requirements

� Design Business Class Structure

� Design Business Application Logic Flow

Copyright 2003-2015 Steve Wu Page 137

� Design Business Application Logic Flow

� Design Statechart of Business Process Rules

� Design Components of Business Application

Understand Business Requirements

Profile

Customer

Sign-on

Customer Record

System

Process Request

Request Service

<<communicate>>

<<include>>

Access Customer Record

<<system event>>

Copyright 2003-2015 Steve Wu Page 138

External Business

System
Business Person

Check Credit

<<extend>>

process new case

<<communicate>>

Get Credit Record

<<system event>>

Business User

Design Business Class Structure

Customer

FinancialServiceCustomer
0..n0..n

Copyright 2003-2015 Steve Wu Page 139

Service LogAccount Record

Customer
Record

111..n1..n

Service Application Form

0..n0..n

Design Business Application Logic Flow

: Customer
Record

: Customer
Record System

Statement : ClientPage

Request :
PageServlet

Report :
PageServlet

: ProcessManager: Customer

6: Access Customer Record

8: Send Service Result

5: Get Customer Record

7: Send to Process Queue

2: Handle Request

9: Display Result Page

4: Handle Service Request

1: Submit Application

10: Inform Customer

if additional
information needed

Copyright 2003-2015 Steve Wu Page 140

RequestForm : ClientPage

: CreditEvaluation

Session :
SingleSignOn

: External Business
System

: Business User

: PageServlet

: ClientPage

: Process Queue

3: Authentication

information needed
or required

Design Statechart of Business Process Rules
Completed Form

Submitted Reviewed

Pending

file

process updated

Copyright 2003-2015 Steve Wu Page 141

Review

completeness

Rejected

Pending

Review Content

Returned

missing info

completed info

Approved

not accepted

accepted

expired

Design Components of Business Application

ServletClient
Page Process

Request

<<Application>>

Credit
Evaluation

External Business
System

Customer
Data

Copyright 2003-2015 Steve Wu Page 142

Java Servlet Page

Customer
Record

Profile Database
Application DLL

From Development
Infrastructure

From Operational
Infrastructure

PageUpdate

Data Persistence Design

Copyright 2003-2015 Steve Wu Page 143

Part 16

Data Persistence

� Data Persistence Formats

� Mapping Objects to an Relational Format

Copyright 2003-2015 Steve Wu Page 144

� Optimizing RDBMS-based Object Storage

� Design Considerations of Data Persistency

Data Persistence Formats

� Sequential and Random Access Files

� Relational Databases

� Object-Relational Databases

Copyright 2003-2015 Steve Wu Page 145

� Object-Relational Databases

� Object-Oriented Databases

� Selecting an Data Persistence Format

Mapping Objects to Relational Format

� Create Persistent Object Models
– Extracted business data from the class hierarchy for

data persistency to a relational database

� Mapping Table

Object Entity (Relational)

Copyright 2003-2015 Steve Wu Page 146

Object Entity (Relational)

Class Entity table

Object Entity (Row)

Attribute Column

Object identity attribute Primary key (Entity key column)

Methods Stored procedures

Association Foreign key

Collections (whole-parts) Association tables

Optimizing RDBMS-based Object Storage

Book Lending

Lending Transaction ID
Date
Borrower Name
Borrower ID
Book 1 Name
Book 1 ID (ISBN)
Book 1 Type
Book 2 Name
Book 2 ID (ISBN)

First-Normal Form:
Eliminate the repeating fields (columns)

Managed by the Book Management

key

Copyright 2003-2015 Steve Wu Page 147

Book 2 ID (ISBN)
Book 2 Type
Book 3 Name
Book 3 ID (ISBN)
Book 3 Type

Book Borrowing

Lending Transaction ID
Date
Borrower Name
Borrower ID
Book ID (ISBN)

Book

Book Name
Book ID (ISBN)
Book Type
Lending Status

1..*0..* 1..*0..*
key

key

Optimizing RDBMS-based Object Storage

Second-Normal Form:
Remove field depending only

Book Borrowing

Lending Transaction ID
Date
Borrower Name
Borrower ID
Book ID (ISBN)

Book

Book Name
Book ID (ISBN)
Book Type
Lending Status

1..*0..* 1..*0..*

P

P
P, F

P

Book Quantity
Book Description

Borrower Name only needs
Borrower ID

Date only needs
Lending Transaction ID

Copyright 2003-2015 Steve Wu Page 148

Remove field depending only
on partial key

Borrower

Borrower Name
Borrower ID

Book

Book Name
Book ID (ISBN)
Book Type
Lending Status

Borrow Book
Lending Transaction ID
Book ID (ISBN)

Book Quantity

Book Borrowed

Lending Transaction ID
Date
Borrower ID 1..*0..* 1..*0..*0..*11

P, F

P, F

P

P = Primary Key
F = Foreign Key

P

Identify joint keys for
M:M relationships

Book Description

P
F

Optimizing RDBMS-based Object Storage

Borrower

Borrower Name
Borrower ID

Book

Book Name
Book ID (ISBN)
Book Type
Lending Status

Borrow Book
Lending Transaction ID

Book Borrowed

Lending Transaction ID
Date
Borrower ID 1..*0..* 1..*0..*0..*11

P, F

P
P

P
F

F

0..*

0..*

Book Description

Copyright 2003-2015 Steve Wu Page 149

P = Primary Key
F = Foreign Key

Third-Normal Form:
Remove field depending only on
non primary key

Lending Transaction ID
Book ID (ISBN)

Book Quantity

P, F

P, F

Book Description

Book Name
Book Description

P

1..1

Book Description
only needs Book
Name

They are fields that only depending on

non-primary key “book name”

Optimizing Data Access Speed

� De-normalization
� Reversing the normalization for performance

� Clustering
� Adding data fields (columns) to other tables for faster data

retrieval (e.g. Borrower Name are in both Borrower and

Copyright 2003-2015 Steve Wu Page 150

retrieval (e.g. Borrower Name are in both Borrower and
Book Borrowed)

� Indexing
� An indexing table has pre-sorted index based on a type for

faster search (e.g. by “Text-book”, “Reference-book” and
“novel” pointing at each data record as groups)

Design Considerations of Data Persistency

� Store data in local memory for high access-
frequency data that requires less update needs.

� Do not store data in local memory for low access-
frequency data that may require frequent update

Copyright 2003-2015 Steve Wu Page 151

frequency data that may require frequent update
needs.

� Make a design trade-off when data are high access-
frequency and frequent update needs. The bottom
line is the balance of time vs. space.

Implementation and Testing

Copyright 2003-2015 Steve Wu Page 152

Part 17

Manage Implementation

� Resource Assignments
� GUI development

� Specialized business function

� Foundation/Shared function

� Data accessing/persistence

Copyright 2003-2015 Steve Wu Page 153

� Data accessing/persistence

� Networking/infrastructure communication

� Manage the schedule
� Development selections
� Development dependencies
� Change management
� Incremental testing

Avoid Mistakes

� Using “Bleeding Edge” Technology
� Inexperience

� Using Low-cost Personnel
� Inexperience

� Low quality

Copyright 2003-2015 Steve Wu Page 154

Low quality

� Lack of Code Control
� No change management

� Lack of development code standards

� Inadequate Testing
� No rigger test

� No early test cost later major testing difficulties

Test Planning

� Unit/Component Testing

� Integration Testing

Copyright 2003-2015 Steve Wu Page 155

� Integration Testing

� System Testing

� Acceptance Testing

Unit/Component Testing

� White-box Testing
� Code

� Error handling

Black-box Testing

Copyright 2003-2015 Steve Wu Page 156

� Black-box Testing
� Methods

� Interfaces

� Error test

Integration Testing

� User Interface Testing
� User interface functions
� Error conditions

� Use Case Testing
� Use cases

Extended use cases

Copyright 2003-2015 Steve Wu Page 157

� Extended use cases
� Special conditions

� Interaction Testing
� Business logic
� Business transaction (data processing)

� System Interfacing Testing
� Data exchange

System Testing

� Requirement Testing
� Business requirements
� Business process status/conditions

� Usability Testing
� Easy of use
� Performance
� Error reporting

� Security Testing

Copyright 2003-2015 Steve Wu Page 158

� Security Testing
� Authorization
� Authentication

� Reliability Testing
� System Monitoring
� Disaster recover

� Performance Testing
� Stress
� Scalability

� Documentation Testing
� Accuracy of HELP, procedure, tutorials

Acceptance Testing

� Beta Testing (pre-release)
� User environments

� User data

Copyright 2003-2015 Steve Wu Page 159

� Alpha Testing (post-release)
� Conducted by users

� Acceptance test

Example of Test Plan Format

Use Case Test Test Conditions Test Pattern Expected Actual Pass / Comments

Name Type Settings / Field Values (steps) Results Results Not Pass

Copyright 2003-2015 Steve Wu Page 160

Final Course Review

Copyright 2003-2015 Steve Wu Page 161

Part 18

Review of System Analysis and Design

� Capture the business function process
� Create use cases

� Use activity models for detail process for each use case as needed

� Identify requirements

Copyright 2003-2015 Steve Wu Page 162

� Analyze the system components to realize the
business needs
� Class structures to support the business data and functions

� Model their interactions

� Model their internal behaviors

Review of System Analysis and Design (continued)

� Create system design models
� Transform the Analysis-level models as base for creation of design

� Decompose the high-level classes
� Add design structures to support business objects
� Add interfaces with underlying development framework, library, system component,

utilities

� Design specific components using class diagrams, interaction diagrams, state
diagrams:

Copyright 2003-2015 Steve Wu Page 163

diagrams:
� User interfaces
� Business components/objects
� Interfaces with other applications or components
� Interfaces to the back-end data accessing capabilities

� Define deployment model:
� User environments
� Business process distributions
� Operational environment, network, security
� Hardware specifications

Review of System Development Process

New idea

Re-engineering

Development
Planning

System Analysis

Define
Business Process

Business Process
Automation

Change

Copyright 2003-2015 Steve Wu Page 164

System Analysis

System Design

Production System
Installation

Change
Business Process

Production System
Support

System
Implementation

Key Learning from This Course

� Software system analysis and design
� Software analysis and design concepts

� Analysis and design artifacts

You have learned … …

Copyright 2003-2015 Steve Wu Page 165

� Analysis and design artifacts

� Software system development lifecycle
� Fundamental analysis and design process

� Software system architect basic skills

Wish you all
have great accomplishment

in your academic studies

Thank you …

Copyright 2003-2015 Steve Wu Page 166

in your academic studies
and

feature success ！

Student Practice

Copyright 2003-2015 Steve Wu Page 167

Appendix

Student Practice –Create Use Case Model

� Add a use case of “Renew book”

� Write use case descriptions for “Check-out Book”

Copyright 2003-2015 Steve Wu Page 168

� Students present models

Student Practice –Create Analysis Model

� Create a collaboration diagram for “Check-in book”

� Add new class structures to support
� “Magazine”

� “Staffs” of the school

Copyright 2003-2015 Steve Wu Page 169

� “Staffs” of the school

� Student presents models

Student Practice -Create Design Models

� Create application flow for “check-in book” and
“check-out book”:
� User interface

� System application logic flow (UI, flow control, data access)

� Create database table

Copyright 2003-2015 Steve Wu Page 170

� Show deployment diagram

� Students present models

